Implementing Nickle

Keith Packard
Hewlett-Packard Cambridge Research Laboratory
keithp@keithp.com

Abstract

The Nickle programming language is a modern imperative/functional
programming language featuring (among other things): C-like syntax; ar-
bitrary precision integer and rational arithmetic; settable-precision float-
ing point arithmetic; a strong static type system featuring subtypes (that
also allows flexible types, permitting run-time type checking); automatic
storage management; first-class functions; first-class continuations and
exceptions; first-class threads with concurrency control; and a simple but
usable module system. Nickle is implemented as a interactive compiler
that generates code for a run-time byte-code interpreter. The runtime
support for such a project is non-trivial: much of the 25,000 lines of C
and 1,500 lines of Nickle in the current implementation is devoted to run-
time issues.

Some of the interesting elements of the runtime system will be dis-
cussed, including the byte code interpreter, storage representations of
data, the C-friendly garbage collector, environments, continuations, thread
support, and arbitrary-precision arithmetic. The efficiency and effective-
ness of the current system will be discussed, including performance and
performance bottlenecks, as well as the potential for other implementa-
tions with different engineering tradeoffs.

1 Introduction

The design of Nickle started with the need for a system for arbitrary precision
numeric computation. At the time, there were two common ways of performing
such computations — building a library and calling it from C, or using Lisp.
Neither option provides the graceful infix syntax, and the C option requires
a lot of additional bookkeeping on the part of the programmer for memory
management.

The language ’ec’ (for extended-precision C) was designed along with some
basic arbitrary precision integer routines. This was implemented by a com-
piler which generated code for a byte-coded virtual machine. The compiler
was separate from the runtime system, much like Java compilers today. Storage
management was done with reference counting, the lack of structured data types
made that quite practical.

A separate project involved the development of an interactive calculator
language ’ic’ for quick numeric work. Early versions of that language evalu-
ated double precision floating point expressions directly inside the parser. That
was later modified to build data structures that an interpreter would walk for
evaluation. This permitted the addition of stored programs.

The ’ec’ language was eventually discarded, and the numeric routines folded
into ’ic’ so that this interactive language could be used for arbitrary precision
numeric computations. Ic grew slowly, adding support for rational arithmetic,
strings, files and arrays. With the addition of arrays, the reference counted
storage manager was replaced with a mark-sweep garbage collecting allocator
taken from the Kalypso lisp interpreter. Ic was a pure polymorphic language,
no type declarations are available and there is no type checking.

The data structure interpreter which restricted language developments was
replaced with a bytecode compiler and interpreter, support for threading was
added and the language name was changed from ’ic’ to ’nick’. Threading was
added mostly because it was possible, given the byte code interpreter, it also
turned out to be useful in implementing a primitive debugger. Primitive variable
data typing was added, along with runtime type checking. Structured data
types were added, but not fully type checked. Continuations were developed
and exposed using the traditional C ’setjmp’ and ’longjmp’ functions.

Years later, a paper about the language was submitted to the Usenix tech-
nical conference. In preparation for this paper, several longstanding nagging
issues with nick were addressed. Static type checking was added, the machine-
specific floating point code was replaced with a software implementation that
provides arbitrary precision. Namespaces provided some separation between in-
terfaces and implementations. Structured exceptions and language support for
assured execution across non-local control flow changes address the integration
of threading, locking and continuations. As the language had changed in many
fundamental ways, the name was changed again to ’nickle’.

2 Nickle Implementation Overview

There are several easily distinguished internal areas within the Nickle imple-
mentation:

e Parsing and lexing. Parsing the Nickle language stretches the limits of an
LALR parser.

e Bytecode generation. Explicit parse trees are converted to bytecodes.
Typechecking requires interactions with the lexer to resolve typedefs and
namespaces.

e Bytecode interpretation. The Nickle bytecode language is tightly coupled
with the underlying implementation.

e Storage management. A portable mark-sweep garbage collection com-
bined with some C conventions makes storage management within the
implementation simple and robust.

e Numeric computation. Classic algorithms along with some new ideas work
together in Nickle’s numeric system.

e Threading and continuations. Continuations are used throughout the im-
plementation to solve flow of control issues.

e Performance analysis. Nickle provides performance measuring tools that
capture statement level timing.

3 Parsing and Lexing

Nickle uses a lexer built with ’lex’ and a yacc grammar. The combination of
these two tools has dramatically simplified the maintenance and development
of the language.

The Nickle parser builds complete parse trees which are saved internally to
report messages and errors — instead of saving the program text, Nickle can
redisplay any portion of the program directly from the parse trees. The pretty
printer output must be carefully generated to ensure it will reproduce the same
program when fed back into the lexer. This is currently a manual process;
changes to the language must be reflected by changes in the pretty printer.

To retain C-style typedefs, and to permit similar usage for name space names,
the lexer must be able to distinguish between various kinds of identifiers. The
parser places names into the symbol table, along with their storage class and
type. The parser doesn’t allocate storage; that operation is left to the bytecode
compiler. This means that the parser is responsible for identifying symbols
currently in scope.

Before the addition of typedefs and namespaces, the parser passed raw sym-
bol names to the compiler, which made symbol table management and storage
allocation a single operation. This conflicted with the desired syntax for the
language and the available LALR parser.

4 Compiling to Bytecodes

The compiler walks the parse tree built by the parser to generate bytecodes.
Separate blocks of instructions are allocated for each function or top-level state-
ment.

Storage is allocated for each new symbol, and a few unusual scoping rules
are applied to prune out names which aren’t in scope. One such case is that
initialization of static variables cannot use function arguments or local variables.
These appear in the static scope of the initializers, but aren’t available during
execution. Nested functions require the use of a static link for stack and static
variables, the depth of which is computed at compile time.

poly

T TTT—

poly [] struct {} poly(int) real
/ /\
poly[*] int[] Struct{ poly x;} poly(poly) real(int) rational
NS |
int[*] struct { int x; } int(int) int
struct { int x; inty; } int(real)

Figure 1: Subtype Relationships

Much of the compilers efforts are centered on type checking. Each operation
and variable use are statically type checked. Because the underlying virtual
machine is fully polymorphic and performs full run-time type checking, the
compiler static type checking is strictly for the benefit of the developer. Type-
checking is somewhat ad-hoc in the current implementation, the intent is to
require exact type matches, except where expressions use polymorphic types.
Two types "match” if either is a subtype of the other, a few examples of subtype
relationships are shown in Figure 1.

The type checking rules were recently relaxed to permit subtype to supertype
conversions to be left to the runtime system to check. This change allowed the
specification of functions like 'max’ that could operate over all of the numeric
types. Some of this will not be necessary once parametric polymorphism is
added to the language, but the ’pow’ function (and the identical ** operator)
will still need this relaxed rule. "Pow’ returns integers whenever the left operand
is an integer and the right hand is a positive integer, but the type system doesn’t
have a specification for positive integers, hence 'pow’ must be specified to return
rational numbers for arbitrary int/int operands.

The compiler doesn’t currently perform any kind of optimization; the gen-
erated bytecodes reflect the program structure directly. Simple optimizations
like constant folding would provide some improvement in performance. More
sophisticated operations like common subexpression elimination would impact

the developers ability to debug applications, and would need to be optional.
Such optimizations should be relatively straightforward, given the availability
of the full parse tree at compile time. Because the parse tree is used to display
the context of errors, a separate tree would be needed for any tree transforming
optimizations.

5 Execution in Nickle

The Nickle virtual machine provides an accumulator, a stack of values and
a separate list of activation frames. The stack of values is used strictly for
intermediate computation, no persistent values are stored there. Local variables
and function arguments are stored in the frame; static variables are stored in a
block referenced from the frame and globals are stored directly in their symbol
table entries.

The combination of an evaluation stack and an accumulator matches C se-
mantics quite well where every expression has a value which may, or may not,
be used in further computations. The ’ec’ language used a strict stack machine
which required a significant amount of bookkeeping when managing function
return values and chained assignments. The simple addition of an accumulator
eliminate all of that difficulty.

5.1 Program Data Storage

Local variables and arguments are stored in the frame so that continuations can
easily capture their storage locations, rather than just their current values. The
semantics of static allocation requires that new storage be allocated each time
the enclosing function definition is evaluated.

The evaluation of the function definition creates a closure containing storage
for static variables declared within that function, a reference to the enclosing
static frame of the function and a pointer to the executable code. When the
function is called, a frame is built containing a pointer to that storage for the
static variables, a pointer to the enclosing static frame and new storage for
dynamic variables declared within the function. This frame is linked into the
thread execution frame context and the instruction pointer in that context is
set to the first instruction in the function.

5.2 Virtual Machine Instructions

The compiler generates “bytecodes”, which are simple instructions containing
an opcode and up to two parameters. There are currently 58 opcodes, that
number varies quite a bit as the structure of the runtime system changes. Many
of the opcodes are special purpose operations that manipulate virtual machine
state which is specific to the Nickle language, like twixt statements, exception
handling and thread creation. There are twelve opcodes used to manipulate
storage, with separate opcodes for structures, arrays and structure references.

These are all designed to reduce the conditional code needed within the inter-
preter for each operation.

Each instruction also contains a pointer back to the parse tree for the state-
ment in which it occurs, this permits the run-time system to report errors rel-
ative to the source code, rather than the instruction stream. It would be more
efficient to separately store ranges of opcodes related to the same statement,
however this implementation is quite a bit simpler.

5.3 Virtual Machine State

All execution occurs in the context of a thread. Threads are one of the primitive
data types in Nickle so that Nickle applications can manipulate them directly.
As shown in Figure 2, the execution context within a thread contains:

e A continuation containing:

— The accumulator and the value stack.
— An instruction pointer along with a pointer to the block of instruc-
tions containing the pointer.

— A pointer to the current frame.
— A list of current caught exceptions.
— A list of current twixt blocks.

e Any currently executing long jump.

e Some scheduling state.

5.4 Instruction Restart and Completion

Execution of any opcode can be interrupted by certain signals or an internal
exception. This is implemented by instruction restart; the state of the virtual
machine must always be updated atomically after the instruction is committed
to being completed. Operations which affect global machine state force the
current instruction to complete so that any side effects happen only once.

Other signals don’t interrupt the current instruction, instead they wait for
the current instruction to complete before affecting the machine state. This was
necessary, especially for timer and IO signals, to ensure that computation would
continue to make progress in the face of slow instruction execution and frequent
signal interruptions.

5.5 Breakpoints

The current debugger has relatively powerful inspection capabilities, as it per-
mits access to the full language in the context of the current statement. However,
there is no support for suspending execution except when an exception is raised
and not handled. Simple breakpoints need to be added to the virtual machine
and then exposed to the debugger so that more sophisticated debugging can be
performed.

Accumulator

Obj

Const 10 (push)
Loca a

BinOp +
Return

~N

I nstruction Pointer

-

Frame

previous frame
static link
locals

statics

return location

%

frame pointer Twixt
continuation
|leave instruction
twixt depth
twixts
Catch
catches continuation

exception name

Figure 2: Execution Context

6 Storage Management

One of the design goals of this family of languages has always been automatic
storage management. Early languages used reference counting, but with the
addition of composite (and possibly recursive) data types, a garbage collector
was strongly desired. Fortunately, another language implementation, Kalypso,
provided a portable, C-friendly, mark-sweep garbage collector.

To be portable, the garbage collector required that all data be explicitly
rooted; the collector couldn’t walk the C stack or hunt through machine registers
for data references. The Kalypso implementation was constantly plagued by
missing references, these would be harmless until the garbage collector was run
at the wrong time.

6.1 Garbage Collection in C

When integrating the Kalypso garbage collector, a conservative automatic ref-
erence mechanism was designed. Newly allocated memory is placed in a special
memory stack when returned from the allocator, this stack is manipulated by
the C routines in a simple way — as all new values are placed on the stack as
they are allocated, each routine need only reset the stack to it’s previous height
and insert any values that routine returns.

Routines which fail to participate in this convention don’t cause any harm,
the values passing through them are left on the stack and the stack is cleaned by
routines higher in the call chain. This particular mechanism is effective enough
that the entire runtime system now uses garbage collected memory and has
largely avoided all storage related problems.

A stop and copy collector would probably provide some significant perfor-
mance improvements, but it would eliminate the flexible C interface as stop
and copy collectors must rewrite all references to every object in the system.
Because data outside of that explicitly allocated isn’t examined by the collector,
there is no way to rewrite references that may be contained in registers, the C
stack or unknown global variables.

6.2 GC Data Structures

Memory is allocated in power-of-2 sized buckets, from 8 to 32K bytes, above
that, separate malloc chunks are used for each allocation. A single bit of over-
head is required for each small allocation to store mark state. Each allocated
object must contain a pointer to a structure containing a function to call when
scanning the memory system for referenced data, this pointer is used within
Nickle for values to also mark the type of value referenced, and to point at the
functions which manipulate data of that type. This means that every allocation
has four bytes of overhead, making even a simple 32-bit integer consume 8 bytes
of memory. Until recently, the values also contained explicit tag values, making
the lowly int consume 16 bytes (12 bytes of value, padded to a power of two
bucket).

e header

/\ - reference bits

2 ﬁ DN . Data........

Figure 3: Memory Allocation Data Structure

Chunks of identical sized allocates are grouped together. Each chunk, along
with chunks for the large allocations, is placed in an AVL tree as seen in Figure 3
so that the mark operation can locate the chunk based solely on the address of
the object within the chunk. An AVL tree was chosen because it automatically
balances the tree, even given the typical linearly increasing addresses returned
from the underlying system allocator used to allocate the chunks.

7 Numeric Algorithms

As the original ’ec’ language was designed for arbitrary precision computations,
the Nickle implementation has tried to incorporate reasonable implementations
of algorithms for large numbers. The basic natural arithmetic routines are
implemented using 64 bit objects, which significantly improves performance
over 32 bits.

7.1 Integer Multiplication

Natural multiplies are handled either with the classing ” grade school” approach,
or, when dealing with number larger than 6400 bits, the Karatsuba algorithm is
used. A future addition might include an FFT-based multiplier for really large
numbers. Karatsuba multiplies reduce the total cost of computation using the
following relation:

zy = (z1b+ 20)(y1b+ yo)
= b1y + b(x1yo + oY1) + ToYo
= bz1y1 + b(T1Yo + Toy1 + T1Y1 + ToYo) + Toyo — dT1y1 — bToYo
= (b® = b)z1yr + b(x1 + o) (yo + y1) + (1 — b)zoyo

Select b so that the larger of x or y is split into two roughly equal pieces,
and recurse to compute the sub factors. This reduces the algorithm from O(n?)

to O(n!93). Because of the larger constant factor, smaller numbers are more
efficiently multiplied with the classic algorithm, hence the recursion terminates
when one of the terms becomes smaller than the limit described above (6400
bits).

An algorithm with similar performance improvement for division exists, but
has not been implemented for Nickle.

7.2 Integer GCD

Computing the greatest common divisor (GCD) of two integers is an important
part of any implementation of rational arithmetic; the obvious representation for
rational numbers provides many equivalent representations for the same value,
it is best to always convert numbers to a canonical representation, done by
dividing numerator and denominator by their GCD.

Nickle uses Weber’s accelerated integer GCD algorithm, which is nominally
O(n?), just like the classic binary GCD algorithm, except that it does many
fewer multi-precision computations making it significantly faster in practice.
This algorithm alternates a k-ary reduction with the usual GCD modulus step;
k-ary reduction is used when the terms are of similar size, while the modulus is
used otherwise.

For operands u and v, the k-ary reduction replaces u with nv — du where n
and d are 32-bit values chosen to yield at least 64 zero bits in the result which
can then be stripped off. This reduction can introduce spurious factors which
are eliminated at the end of the GCD computation by taking the result, g, and
recomputing the GCD against the original two inputs: ged(u, ged(v,g)). As g
is generally much smaller than u or v, this computation is usually quite fast.

7.3 Repeating Decimals

One of the interesting problems when dealing with rational numbers is how
to display them accurately. As any rational number can be represented by a
repeating expansion in any base, Nickle provides a mechanism for computing
this representation, presenting the result in three parts:

num

don = int. fized{repeat} (1)

The length of the fized portion of the representation is calculated by

fixed = 0;

while ((g = ged (den,base)) = 1)
fixed++;
den /= g;

The length of the repeat portion is somewhat more difficult to calculate,
and beyond the comprehension of this author who wrote the code long ago and
failed to comment it sufficiently.

10

7.4 Arbitrary Precision Floating Point Numbers

One of the undesirable limitations of the 'nick’ language was its use of machine-
specific floating point numbers for imprecise computation. More than the lim-
ited precision of the mantissa, the inability to convert arbitrary integer or ratio-
nal values to an imprecise equivalent made them fit very poorly into the Nickle
value hierarchy. Several alternatives were investigated to provide some kind of
imprecise values which could hold values of arbitrary magnitude

One possible representation is to bound the error of the value on either end
with an arbitrary precision rational number. This interval arithmetic has many
desirable properties, not the least of which is a very tight and accurate error
bound after each computation. It is, however, very expensive in practice. Long
computations with rational numbers usually yield numbers with large terms, as
floating point computations often involve numeric approximations, the speed of
the resulting implementation would be unacceptable in many cases.

Instead, the classing 'floating point’ representation is used, this time with
arbitrary precision mantissa and exponents. This permits very high precision
computations (given suitably precise inputs), and an arbitrary range of mag-
nitudes. Providing more than 56 bits of mantissa isn’t generally necessary in
the physical sciences, but can be useful for some calculations so Nickle uses a
default precision of 256 bits. The extra computation necessary isn’t generally
significant, and the reduction in cumulative error can be handy at times.

The precision of any operation is affected by the precision of its inputs —
multiply a value precise to 256 bits with one of 1024 bits results in a value precise
to only 256 bits. Addition and subtraction are a bit different; the precision of the
result depends on the precision of the inputs along with their relative magnitude.

Given the underlying implementation of natural numbers, there aren’t any
special algorithms for dealing with floating point numbers. The imprecise math
functions are provided by a library (written in Nickle) which implements sqrt,
cbrt, exp, log, logl0, log2, sin, cos, tan, atan, asin, acos and pow using a variety
of algorithms which can produce values of arbitrary precision.

The floating point representation requires that any conversion from precise
numbers be accompanied by a precision argument; there is a default precision,
but it would be nice to develop some better convention or mechanism to deter-
mine the necessary precision.

8 Threading and Continuations

The switch from a tree-walking interpreter to a byte code interpreter provided
some of the most interesting capabilities in Nickle. Because the execution con-
text could be encapsulated in a single data structure, it was easy to permit more
than one to exist at a time and to cycle through each in turn, this provides very
fine-grain multi-threading, albeit capable of using only a single processor.
Being able to duplicate this context permitted the implementation of contin-
uations in a scheme style — the internal virtual machine state is separate from the

11

program visible values, things like local or static variables can be shared among
multiple continuations while each holds its own value stack, accumulator and
program counter.

While threading is probably one of the least used features of Nickle by appli-
cations, it is necessary for the implementation of a Nickle-based debugger, the
debugging code can run in parallel with the target code and interact directly.

Continuations contain a subset of the execution context of the thread, the
accumulator and value stack, a frame pointer and program counter, the list of
handled exceptions, and the list of currently active twixt blocks. This com-
monality should be exposed in the implementation by making them use the
same data structure, but having threads reference their data through a pointer
would cause some performance issues. It might be possible for each to share a
common data structure, perhaps at some point that change can be investigated
more closely.

8.1 Threading Effects on Nickle

Aside from the relatively trivial implementation of threading within the virtual
machine, the effect on the interface of Nickle with the operating system is a bit
more complicated. Nickle places all files in non-blocking mode and has each file
deliver SIGIO when new data arrive. This allows Nickle to continue executing
unblocked threads while others are pending on file descriptors.

The addition of threading to the language has had a much more significant
impact on the design of the language, Nickle provides an interesting mixture
of structured exception handling, continuations, structured mutual exclusion
execution and threading.

9 Twixt, Exceptions and Non-Local Jumps

While programmatic use of twixt and exception handling are usually quite dis-
tict, within the interpreter they share many similarities. Both twixt and ex-
ception handlers involve non-local flow of control. Twixt ensures that various
blocks of code are executed during a non-local control transfer while exception
handlers serve as a target for dynamically computed control transfers.

The twixt statement provides a structured mechanism for identifying regions
of code protected by various mutual exclusion operations. One of the interesting
semantic requirements is that the entry portion of the twixt be executed along
any path into the twixt, and the exit portion be executed along any path out
of the twixt.

Exception handlers provide dynamically scoped functions that are invoked
when exceptions are raised. This means that called functions are generally
unaware of the exception handler and will not know the target of an exception.

Both exception handlers and twixt statements place additional state in the
thread continuation. As see in Figure 4, each twixt block or exception catch

12

[Frame
Twixt *
[}
: Frame
: Frame
[Twixt : *
I
* : Frame
. I
[Twixt : *
‘_ I
A | [Frame
I
Frame Pointer : ’
. I
. - ' Frame
Catch Pointer (Catch ;
Twixt Pointer [Frame

Figure 4: Twixt blocks, Exception Handlers and Function Call Frames

13

block captures a continuation so that the interpreter can restart execution within
their context.

9.1 Twixt

The twixt record contains an additional pointer so that either the enter or leave
block may be executed as necessary. The syntax of the language ensures that
the continuations for these two blocks are identical except for the instruction
pointer, so the interpreter avoids creating two separate continuations by keep-
ing a separate instruction pointer for the leave block. On exit from the twixt
statement, the twixt record is removed from the list.

When a thread jumps into a continuation, the transition is mostly just a
matter of copying state from the continuation into the thread. However, the
two lists of Twixt records must be reconciled so that the appropriate application
invariants are true.

Nickle does this by finding the first common twixt block along the two chains
and then building a temporary data structure associated with the thread called
a Jump record which holds pointers into the two twixt lists to guide the incre-
mental transition from one location to the other as shown in Figure 5. To enter
each twixt block, the thread state is set from the Twixt saved state. On exit
from the twixt block, the interpreter checks for the presence of the Jump record;
if present, it passes control to the next twixt block or on to the target of the
continuation if no more twixt blocks need to be handled.

9.2 Exceptions

Each exception handler prepends a catch block to the thread execution context,
the catch block contains a continuation to return to the exception handler and
the name of the exception. On exit from the try statement, the catch block is
removed. When an exception is raise, the interpreter walks up the list of catch
blocks looking for a handler. If one is found, control is passed to the handlers
continuation. A tiny stub of code at that target passes control to the handler
function. This control transfer must check for the presence of twixt blocks as
described above.

9.3 Effect of Twixt and Exceptions on Other Code

For non-local jumps caused by break, continue and return statements, Nickle
automatically builds a continuation if necessary to ensure that intervening twixt
blocks are executed appropriately. This is statically decidable because all of the
possible twixt blocks are statically visible from the source statement and the
compiler inserts appropriate Unwind instructions which count the number of
nesting catch/twixt blocks.

The continuation data structure is shared with threads, twixts and catches.
Continuations contain the instruction pointer, frame pointer, stack, catches and
twixts. Threads contain additional scheduling state. Twixts contain additional

14

twixts

E

Twixt

twixts

leave
[Twixt J

[}
twixts

Ao

(Twixt J

b
twixts

Ao

(Twixt J

From

Figure 5: Flow of Control During Continuation Transfer

15

Twixt

enter

enter

twixts

N

Twixt J

twixts

Twixt J

To

instruction pointers that point to the start of the enter and leave blocks. Catches
are labeled with the exception they catch. Continuations are directly embed-
ded in these other structures to reduce memory allocator overhead and pointer
dereferencing in the interpreter.

10 Performance Analysis

To help refine algorithms to spot obvious performance problems, Nickle provides
statement level profiling information. This is done by enabling a 10ms periodic
timer signal with setitimer. At each timer tick, the current program counter is
used to find the associated statement. Two counters in each statement represent
the ticks consumed with the program counter within the statement and the
ticks consumed with the program counter within some function called from the
statement. These values are displayed by the pretty printer.

The Nickle compiler generally uses tail-call optimizations to limit the frame
depth due to recursion, but this eliminates statements using tail calls from the
cumulative performance data. To help this, the compiler can be instructed not
to generate tail call instructions when profiling.

11 Conclusions

The current Nickle implementation is a result of a long and leisurely develope-
ment process spanning two decades. Much of the code has been refactored or
reimplemented several times leading to areas which reflect a high degree of pol-
ish. Some of the code has languished, largely because it works well enough and
hence has no impact on correctness or functionality.

Because development has occurred sporatically over such a long time, there
are areas of the code which are no longer well understood, and areas which
reflect design methodologies of an earlier era. One obvious problem in many
areas is the lack of sufficient documentation on the underlying methods used
in the implementation. An overall design document has been sorely needed for
some time.

The gradual redefinition of the language has left its mark in various parts of
the code. There are several data structures which seem roughly bolted together
as the language semantics migrate past their original design. The lack of a
development schedule has allowed many such instances to be fixed, resulting in
a gradual improvement in the overall integration of the system.

Nickle has been the subject of a wide ranging search for ideas in program
language development, numeric algorithm development and language implemen-
tation. The current language brings significant power to the design and devel-
opment of software while still being usable as an interactive environment. The
implementation attempts to capture resposible engineering practices in straight-
forward ways while still providing respectable performance and not impeding
the desired advancement of the language itself.

16

