
Nickle: Language Principles and Pragmatics∗

Bart Massey

Computer Science Department

Portland State University

Portland, Oregon USA 97207–0751

bart@cs.pdx.edu, http://www.cs.pdx.edu/~bart

Keith Packard

SuSE Inc.

keithp@suse.com, http://keithp.com

Abstract

Nickle is a vaguely C-like programming language for
numerical applications, useful both as a desk calcu-
lator and as a prototyping and implementation lan-
guage for numerical and semi-numerical algorithms.
Nickle abstracts a number of useful features from a
wide variety of other programming languages, par-
ticularly functional languages. Nickle’s design prin-
ciples and implementation pragmatics mesh nicely
to form a language filling a useful niche in the UNIX
software environment. The history of Nickle is also
an instructive example of the migration of an ap-
plication from an idea to a freely-available piece of
software.

1 Introduction

The past 20 years have seen an explosion of
“utility-belt programming languages”. Often im-
plemented as true or byte-code interpreters and de-
signed to operate smoothly in the UNIX environ-
ment (in the spirit of sed [McM78], AWK [AWK88],
bc [MC78a], dc [MC78b], and the like), these
languages are intended both to address specific
classes of tasks and to be usable for general-
purpose programming. Other examples include
Perl [WCS96], Python [Lut01], Java [GJSB00],
various Scheme [CE92] implementations, and
ML [MTH90].

During this time frame, the authors have been
intermittently involved in the development of a
utility-belt programming language initially tailored

∗To appear. Proceedings of the 2001 Usenix Technical
Conference, FreeNIX Track.

to scratch-pad-style numerical calculation, and re-
flecting design principles including:

• Simplicity of design and implementation.

• Separability of concerns, such that language
features can be implemented and used indepen-
dently.

• Use of best-practice programming language
technologies.

• Practical problem-solving utility.

The result is a language with a low learning curve
for experienced UNIX programmers that allows the
integration of offline programs with online calcula-
tions in a flexible yet safe notation.

2 Programming With Nickle

A small example (Figure 1) may help give a feel for
the Nickle language. Note that the variables i and
t are declared at first use. The language feels much
like C, but with some of the bothersome details of
declaration and typing optional.

This much code would typically be placed in a file,
and read into a running Nickle session (“> ” is the
default Nickle prompt here and throughout)

> load "countsum.5c"

During reading (which occurs with no perceptible
delay) the input file is incrementally compiled into
the running session. We can then interactively cre-
ate a sample array to work with.

1

function countsum(c, v, n) {

if (c < 0)

return 0;

int t = 0;

for (int i = 0; i < n; i++)

t += v[i];

if (t == c)

return 1;

if (t < c)

return 0;

return countsum(c, v, n - 1) +

countsum(c - v[n - 1], v, n - 1);

}

Figure 1: Function returning the number of ways
that the first n elements of the array v can be added
to produce c.

> v = [5]{1, 2, 3, 4, 5}

1 2 3 4 5

The square brackets are the array constructor, and
in this case create a dynamically-typed array of 5
elements. The curly braces, as in C, are being used
to surround an initializer list which values the ar-
ray elements a[0] = 1 . . . a[4] = 5. Now we can
invoke countsum() (which is extracted from a Crib-
bage scoring program).

> countsum(15, v, dim(v))

1

> countsum(12, v, dim(v))

2

If a new definition is given interactively for
countsum(), it will scope out the current definition.
As expected, the storage for v is allocated automat-
ically, and released when v becomes unreachable.

3 Language Features

Nickle strives to be a simple yet expressive program-
ming language: always a difficult goal. A reasonable
number of simple language features may be com-
bined in powerful ways to solve problems.

3.1 Names, Lifetimes, Types and Values

Nickle has a C-like syntax and procedural imper-
ative semantics. In addition to borrowing from
other imperative languages like Java and Modula-
3 [Nel91], Nickle incorporates a number of useful

notions from the functional programming commu-
nity.

3.1.1 Names

Nickle supports first-class function values with full
static scope. The visibility of a name is controlled
by its scope, and by its relationship to its names-
pace. Nickle namespaces are similar to Java mod-
ules, except that they are purely syntactic rather
than having anything to do (in principle or in cur-
rent practice) with the filesystem. The closest no-
tion is probably namespaces in C++. In brief, a
namespace is opened by a namespace declaration.
Each name declared in a namespace may have one
of three possible visibilities:

public The name should be visible outside the
current namespace, and should be automati-
cally imported.

protected The name should be accessible from
outside the namespace via an explicit path, but
should not be made directly available by import
declarations.

(no keyword) The name should be completely
inaccessible outside the namespace.

Names in a namespace may be referenced in one of
two ways. First, public and protected names may
be accessed via an explicit namespace qualifier ::.
Thus, the name Foo::bar refers to the name bar in
the namespace Foo. Second, the public names in
a namespace may be brought into unqualified scope
using an import declaration. For some example uses
of namespaces see Figure 3 below and the Appendix.

3.1.2 Lifetimes

There are three options for the lifetime of a Nickle
name, as opposed to C’s auto and static. This ex-
tra control is a natural consequence of the distinc-
tion between global functions and nested functions,
which is lacking in C. It manifests noticeably in the
times at which initialization occurs. The three life-
times for a Nickle declaration are:

global The lifetime of the named value is the life-
time of the interpreter evaluating the program.
Objects declared global are initialized once,
when the definition of the function containing
them is first encountered.

2

int() function f () {

int function g () {

global x = 0;

return ++x;

}

return g;

}

> g = f();

> g()

1

> g()

1

> g = f();

> g()

1

Figure 2: A variable x with auto scope.

static The lifetime of the named value is the
lifetime of the function in which the definition
occurs. Objects declared static are initial-
ized whenever the function containing their def-
inition is evaluated. In the absence of nested
scopes, this lifetime is the same as global.

auto The lifetime of the named value is the life-
time of the current function. Objects declared
auto are initialized whenever their definition is
evaluated.

The default lifetimes are as in C: global for top-
level objects, and auto for those local to a function.
Note that lifetime is different than scope: different
function definitions, for example, may have different
global objects named x.

Figure 2 is useful illustrating the difference between
auto, global and static scope. Imagine that the
auto declaration of Figure 2 was instead a static

declaration. In this case, x would be initialized
whenever the definition of g was evaluated, and thus
the second invocation of g() at top-level would re-
turn 2. If x was instead declared global, it would
be initialized only once, when the definition of f was
compiled, and thus the successive invocations of g()
would return 1, 2, and 3.

3.1.3 Types

Nickle has two sets of type consistency rules. First,
any object in the program may be statically typed.
The static type system strongly resembles that of

C or Java. Syntactically, Nickle types are required
to be like Java’s optional “left-hand” syntax: type
declarations appear to the left of program objects,
and are modified type-by-example. Semantically,
there are subtle but significant differences between
the type systems of these languages. Nickle allows
objects to be explicitly typed poly, indicating that
the type need not be statically checked. Unlike
C, arrays with different sizes are not of different
type. Nickle has more types than C, including a dis-
joint union type and multi-dimensional array types.
Structure types obey a subtype relationship over
their members. The void type is handled slightly
differently than in C: in Nickle, there is a single
value of type void, written as <>, allowing the void
type to interact more smoothly with the rest of the
language without significant loss in security. All of
this adds up to a type system which provides full
security while retaining reasonable expressiveness.

Secondly, all operations are currently checked for
type consistency (as well as performing array
bounds checking and the like) at runtime. While
in principle many of these runtime checks could be
removed by static type checking, and others could
be hoisted in order to improve performance, run-
time type checking is not currently believed to be
a performance bottleneck, and the implementation
is greatly simplified by this choice. The combina-
tion of strong static checking and complete runtime
checking does normally mean that program defects
will be caught “as early as possible”, providing con-
fidence in execution correctness and aiding debug-
ging.

3.1.4 Values

Nickle supports first-class structured values. Any
value of any type may be created and used in any
legal expression context. This is important for a lan-
guage designed for a desk calculator. It also allows
the programmer to determine which values in the
program need to be named, instead of being forced
to produce names by the language semantics.

For example, an anonymous array can be created
whenever needed, and treated just like any other
array object. In this example, a two-element string
array is created and then dereferenced:

> ((string[*]){"a","b"})[1]

"b"

3

3.2 Implementation Features

The current implementation of Nickle is an inter-
active byte compiler, in the style of many Scheme
implementations. All expressions and statements
typed at the command line are rapidly compiled
into an intermediate byte-code representation that
is then evaluated in the compiled top-level context.
The language is designed to support implementa-
tions using offline compilation to native code, for
greater efficiency. While Nickle’s predecessors were
at one time pure interpreters, the current structure
of the language would make such an implementation
difficult, and offers no obvious advantages.

The statement syntax of Nickle, as with C, is es-
sentially that of infix expressions, lending itself to
scratch-pad-style calculation. Full interactive com-
pilation and first-class support for all values means
that it is quite easy to interact with and modify
Nickle code written online, to develop new code on-
line, and to calculate interactively in this environ-
ment. The easy loading and import of appropri-
ate namespaces allows a custom calculation envi-
ronment to be quickly set up.

Many of the features of Nickle are predicated upon
the existence of automatic storage management.
The Nickle implementation includes a tracing mark-
sweep garbage collector, which is used in two prin-
cipal ways. First, storage is implicitly allocated
for Nickle objects during definition. Second the
C code that implements Nickle makes use of the
garbage collector as a general-purpose storage allo-
cator. This is facilitated by the non-copying nature
of the collector, and by CPP macros which allow
easy rooting of the garbage collector in a C frame.

3.3 Numeric Features

To some degree, the reason for the existence of
Nickle is the support for infinite-precision integer
and rational arithmetic. By default, non-integer
quantities are represented as rationals, which en-
sures that precision will never be lost by the com-
putation. For convenient comparison and for fa-
miliarity’s sake, rationals behave syntactically like
floating-point numbers: they are input and output
using a floating decimal point.

To avoid loss of precision due to decimal conversion,
both output and input representations of rational
numbers support “repeating decimals”. For exam-
ple, the constant 0.1{6} is the Nickle decimal rep-
resentation of 1/6. Using sophisticated techniques

based on a factored representation, Nickle is capa-
ble of calculating the minimum-length repeat for the
decimal representation of an arbitrary rational num-
ber. This can be very expensive in some cases, how-
ever, so by default repeating representations beyond
a certain number of digits will be truncated. While
this may lead to loss of precision on input or output,
it can be disabled, and in any case all calculations
will still be performed internally to full precision.

Some real numbers (irrational numbers such as
√
2

and transcendental numbers such as acos(0)) are
not precisely representable as rational numbers. In
order to perform calculations involving these quan-
tities, Nickle provides its own implementation of
floating-point arithmetic with user-settable man-
tissa precision and infinite precision exponents. A
sensible numeric type hierarchy and well-defined
rules for combining various precisions means that
Nickle is generally very good at retaining precision
in all numeric calculations.

3.4 Flow Of Control Features

In order to cope with situations where a function
should not return normally, either as a result of a se-
mantic error such as division by zero or at the user’s
request, Nickle provides support for the declaration,
generation, and handling of exceptions. Exceptions
are not first-class objects. They are declared in the
style of void functions (including arbitrary typed
formal parameters), and are scoped identically. At
any point during program execution, any in-scope
exception may be thrown via a raise statement. A
Java-style try–catch block allows the handling of
raised exceptions. Currently, there is no mechanism
for “restarting” a computation which has raised an
exception: once an exception has been raised, exe-
cution will resume at the nearest applicable dynam-
ically enclosing catch, or at the top level if none is
found.

In addition to exceptions, Nickle provides first-class
“continuations”, which capture an execution locus
and environment. These are not true continuations,
as they do not restore the values of variables mod-
ified by assignment between the capture of a con-
tinuation and its use: however, the actual seman-
tics supported is both much cheaper to execute and
arguably more usable for an imperative language.
The closest C analog is setjmp()/longjmp() (and
indeed, the Nickle equivalents share these names).
However, unlike C, a longjmp() can occur any-
where, not just in a dynamically enclosing function.
In addition, since the Nickle primitives are builtins

4

rather than library functions, variables modified
between a setjmp() and a longjmp() have well-
defined values after the longjmp().1

3.4.1 Threads

Nickle contains a continuation-based thread sys-
tem, implemented from scratch entirely in UNIX-
portable C code at the byte-interpreter level.
Thread scheduling utilizes real-time thread pri-
orities with round-robin scheduling among equal-
priority threads. Support is provided for thread
synchronization via built-in semaphores or mutex
variables.

Threads in Nickle are important for at least three
reasons. First, some calculations are most natu-
rally performed concurrently. Consider a simple
generate-and-test example like the odd-number ex-
ample of Figure 3. While in this simple example
saving the generator state would be easy, in prac-
tice more complicated cases (such as for example
a chess move generator) are much easier to write if
the generation and testing are performed in separate
threads.

Secondly, prototyping of parallel algorithms is most
easily performed using a language with concurrent
features. The concurrency primitives provided by
Nickle are very similar to those of low-level parallel
systems, allowing prototyping of code like that of
Figure 3 above for later translation to a truly par-
allel environment.

Finally, the construction and use of Nickle itself is
made easier by the availability of threads. In partic-
ular, the combination of continuations and threads
eases the implementation of debugging in the pres-
ence of exceptions. Normal command-line Nickle
execution is handled by a thread separate from the
command parser. When an unhandled exception
occurs, the debugger can simply expose the thread
state, including the exception continuation, to the
user for inspection.

3.4.2 Flow Control Primitives

Some minor modifications to the Nickle language
to help support threads, continuations, and excep-
tions have proven to be particularly convenient.

1In order to support optimization of separately compiled
C programs while providing setjmp() and longjmp() as li-
brary functions, the C standards allow variables after a
longjmp() to have any value they might have attained since
the corresponding setjmp(), except for volatile variables.

import Semaphore;

semaphore prod, cons;

int i;

void function ints() {

while(i < 1000) {

wait(prod);

i++;

signal(cons);

}

}

void function odd_ints() {

i = 0;

prod = new(1);

cons = new(0);

thread t = fork ints();

while(i < 1000) {

wait(cons);

if (i & 1)

printf("%d\n", i);

signal(prod);

}

Thread::join(t);

}

Figure 3: An odd-number printer using threads.

Threads are created by a low-precedence fork op-
erator: the semantic is that the expression to which
the fork operator is applied will be evaluated in the
new thread returned by the operator. Any thread
can retrieve the result of this computation via the
Thread::join() built-in function. The principal
alternative to making the fork operator a syntac-
tic part of the language was to make it a built-in
function accepting a closure or continuation. This
is much less convenient for the user.

Another important syntactic feature concerns the
semantics of operations under locks or other tem-
porary invariants. Java provides a finally clause
of its try block, whose primary purpose is to en-
sure that the lock is restored. This choice has some
unfortunate consequences. Consider typical Java
code to execute a function under a lock of some
sort, shown in Figure 4. First, this code is syntac-
tically complicated. There are many blocks, and
the flow of control is not obvious. Second, even
though no catch clauses are present the try is nec-
essary merely to obtain the finally clause. Third,
the establishment of the lock is syntactically indis-
tinguishable from the rest of the surrounding code,

5

if (get_lock(&l)) {

try {

locked_operation();

} finally {

release_lock(&l);

}

} else {

throw new LockException("failed");

}

Figure 4: Locking in Java using finally.

twixt(get_lock(l); release_lock(l))

locked_operation();

else

raise lock_exception("failed");

Figure 5: Locking in Nickle using twixt.

which means that the language can have no idea
whether locks and unlocks are matched, and can
provide no assistance with locking errors.

In order to remedy these deficiencies, Nickle sep-
arates the invariant-management functionality of
try from the exception-handling functionality. The
Nickle twixt statement is syntactically similar to
a C for loop, but with two arguments instead of
three, and an optional else clause. A natural reim-
plementation of Figure 4 using twixt is shown in
Figure 5. With this syntax, the get lock(l) and
release lock(l) operations are syntactically dis-
tinguished, and their correspondence is visually ob-
vious. Equally obvious is the fact that the exception
is raised as the result of the failure of get lock().
Finally, the gratuitous try clause has been elimi-
nated, and the nesting has been regularized.

As a final feature, consider the situation where a
continuation is captured using Nickle’s setjmp()

inside locked operation(). Because the
get lock(l) operation is known to be pro-
tecting the context in which the continuation
is captured, Nickle will re-execute it (!) upon
longjmp() back to the continuation. This would
be difficult or impossible in most languages.

3.5 Planned Enhancements

In its current state, Nickle is a quite useful tool. A
number of enhancements to Nickle are planned to
increase that usefulness, by making Nickle easier to
use and harder to make mistakes in.

First and foremost, while Nickle’s current full static
type system is a marked improvement over dynamic
typing alone, it is not the end of the road. Ex-
plicitly stating the types of names is tedious and
error-prone, which may partially explain the lack
of strong static typing in most recent scripting lan-
guage designs. There are two possible improvements
over explicit static typing which might be adapted
to Nickle with good effect.

Parametric polymorphism, as found in ML and
Generic Java (GJ) [BOSW98] (and its close con-
ceptual cousin type templates, as found in C++)
tries to capture the idea that an expression that is
independent of the details of its input and output
types should not be tied to those details. Parametric
polymorphism avoids much “copy-and-paste” cod-
ing while still retaining the benefits of full static
typing. For example, linked list code which is in-
dependent of the type of list elements need not be
repeated for each possible structure type, a savings
in code size and in the potential for error. Since
polymorphic typing is fully safe if properly designed
and implemented, the downside is minimal: a slight
decrease in the expressiveness of the language due
to extra constraints on the code.

ML goes a step further, and adds automatic static
type inference to the language. Instead of having
to explicitly declare all types, undeclared types are
inferred from context, and the resulting type assign-
ments are checked for consistency. Experience has
shown that polymorphic type inference has much of
the flexibility of dynamic typing while still retaining
most of the safety of static typing. For a language
like Nickle which is to be used as a calculator and
for algorithmic prototyping, this seems like an espe-
cially ideal combination.

The Nickle implementation is currently several
times slower than equivalent C code. This is amelio-
rated somewhat by the fact that its primitive oper-
ations on numbers are well-tuned and exceptionally
fast, and by the ability to implement much more so-
phisticated algorithms in Nickle in equivalent time
and code. Nonetheless, there are applications where
better performance would be desirable. The obvious
approaches of optimization of byte code or compila-
tion to native code and optimization thereof should
be explored. There is no reason in principle why
Nickle programs should be dramatically slower than
C programs, although there is some overhead inher-
ent in the language.

An interesting tack in this direction would be to
produce a Nickle compiler to byte code for the

6

Java Virtual Machine (JVM). Running Nickle code
under the JVM would bring a couple of impor-
tant advantages. First, portability to non-UNIX
environments would be greatly enhanced. Sec-
ond, significant performance improvements might
be available “for free”2 as a result of the JVM
runtime native-code compilation and dynamic code
optimization commonly available in many imple-
mentations. On the downside, the mismatch be-
tween Java’s object-oriented model and Nickle’s
imperative-functional model might make things dif-
ficult, and the filesystem-based module system of
the typical JVM implementation is ill-suited to
Nickle’s requirement for separating files from names-
paces.

It would be nice if Nickle supported a wider range
of built-in types, constants, and operators. The lim-
ited range of numeric types is particularly problem-
atic: obvious candidates include the natural num-
bers, finite fields (particularly GF(232)), and various
extensions of the reals, particularly complex num-
bers. Better semantics and more powerful operators
for dealing with vectors, matrices and tensors would
also be a plus.

The natural numbers have been in and out of the
language at various times in its history. They are
currently out, to simplify the language, but they are
being reconsidered since their inclusion would close
the one known hole in the static type system of the
language.3 C-style 32-bit integers were supported
at one time, but were deemed to be too much of a
special case to expose to the user. Consideration is
currently being given to adding general finite field
constructors and operators, but there are notable
complications.

The lack of complex numbers is slightly embarrass-
ing, but ideas about regularizing them and imple-
menting them in a sane and compatible way have so
far been hard to come by. Issues such as the repre-
sentation of complex coefficients are vexing: for in-
stance, are complex integers desirable? In addition,
it is not totally obvious that the complex numbers
should be preferred to other extensions of the re-
als, yet including multiple generalizations makes it
difficult to find a suitable static type lattice and cor-
respondingly to choose runtime promotions.

In addition to numeric types, Nickle could arguably

2As in beer.
3Nickle’s exponentiation operator ** with an integer base

has an integer result when the exponent is a natural number,
but a rational result with negative integer argument. This
proves to be quite problematic in balancing usability and
static typing, and static typing currently loses.

use a larger range of modern structured datatypes,
such as lists, sets, and curried functions. There
are several reasons why we have not provided these
to date. Notably, until a polymorphic type system
is implemented, static typing issues are difficult to
resolve reasonably. In addition, it is problematic
to provide a built-in implementation of datatypes
which might be sensibly implemented in multiple
ways having different properties. Sets are a partic-
ularly good example of this: Pascal’s bitsets have
very different runtime properties from sets of inte-
gers represented as search tries, and both represen-
tations are difficult to generalize to sets of values,
such as structures, which have no natural inherent
ordering. It is questionable whether the language
should make choices for the user about representa-
tion issues, and so far it has been shied away from.

While Nickle’s supporting libraries are already well
along, further work needs to be done here. The
floating-point math support needs to be validated
and extended: it would be especially nice to
make it compliant with the rounding and precision
rules of the IEEE floating point arithmetic stan-
dards [IEE85, IEE87]. The string support is ex-
tremely rudimentary. Built-in support for array
slicing, array comprehensions, and similar features
would occasionally be useful. Some implementa-
tions of standard Abstract Data Types (ADTs) such
as priority queues might occasionally ease algorithm
development.

Support for built-in operators on vectors and arrays
of numbers would be a real plus, and has no obvi-
ous downside except a slight increase in language
complexity. The main reason for their lack of cur-
rent inclusion is the lack of a need for them in the
authors’ work.

It would be nice to add some sort of support for
workspaces or the like to Nickle, to aid scratch-
pad calculation. A save command would be a good
start, but in principle Nickle could allow capturing a
true continuation and saving it to a file, which would
lead to a nice implementation of both workspaces
and checkpointing.

3.6 Omitted Features

Perhaps as important as what to include is what not
to include. For example, Nickle contains no Object-
Oriented Programming (OOP) features. Class-
based OOP in the style of C++ and Java is well
understood and accepted. However, the combina-
tion of this style of OOP with some of the current

7

and proposed features of Nickle, especially polymor-
phic type inference and first-class functions and con-
tinuations, verges on open research questions. In
addition, the most useful domains of application of
OOP, such as large-scale programming, easy reuse
of opaque constructs, and graphics and window sys-
tem programming, are outside the intended scope of
Nickle’s applicability.

Other features deliberately omitted from Nickle in-
clude:

• Support for graphics and GUI implementation.
The impact of this support on the portability
and simplicity of the Nickle implementation is
potentially large, and the perceived benefit for
expected Nickle applications is presently small.
Nonetheless, this decision may be revisited in
the future.

• Language-level support for interfacing with na-
tive code. In actuality, as discussed below, it is
quite easy to integrate native code with Nickle
programs, but only by integrating the native
code into the Nickle implementation.

• Ad-hoc polymorphism, operator overloading,
user-defined operators, and related features.
This is driven by concern about the complexity
and difficulty of implementation of these fea-
tures, and their perceived negative impact on
readability and portability of code. The general
philosophy of Nickle is that anything important
enough to require these features is important
enough to embed in the language definition.

4 History

Nickle began life around 1985 at Reed Col-
lege as ec, a compiler written by Packard for
translating arbitrary-precision arithmetic into high-
performance interpreted byte code. In addition,
around that time, both authors were experiment-
ing with the design and implementation of Kalypso,
an interpreter (and later a compiler) for a purely
functional dialect of LISP. Inevitably, the desire for
LISP-like numerical expressions with C-like syntax
led to the construction of ic, an “interpreted C”
which also incorporated concepts borrowed from
earlier work by Packard and others at Tektronix,
Inc. on incremental C and Pascal compilation.

The original ic was a pure tree-walking inter-
preter with arbitrary-precision integer and rational
datatypes allocated and destroyed statically. This

allowed the memory management issues to be fi-
nessed. Incremental compilation was one of the
first enhancements, and was accompanied by new
datatypes which necessitated a reference-counted
memory management scheme with a custom stor-
age allocator.

By about 1993, accumulated incremental changes
prompted a complete reworking of the ic imple-
mentation. The reference-counted storage manage-
ment was replaced by a tracing mark-sweep collec-
tor (borrowed from another of the authors’ projects,
a functional LISP subset implementation known as
Kalypso), first-class functions were added, and the
syntax and semantics of the language were revised
somewhat. The resulting language was known as
Nick. Later additions included first-class continua-
tions, threads, and, by about 1996, namespaces.

In the last 6 months, the static type system has
finally been implemented, the platform-native float-
ing point representation has been supplanted by
a platform-independent arbitrary-precision imple-
mentation,4 many builtins have been added, the
disjoint union type has been added, the user inter-
face has been improved (including support for GNU
readline), the documentation has been largely
completed, the examples have been collected and
regularized, a multitude of bugs and misfeatures
have been repaired, and other improvements too nu-
merous to list have been made. The result is Nickle
as it exists today.

A few months before the public source release, only
minor changes were planned, except for the imple-
mentation of polymorphic type inference. As the
release was finalized, it became clear that the poly-
morphic type inference system would have to wait:
the features described in the previous paragraph be-
came clear priorities and absorbed all of the avail-
able time of both authors. The lesson here is clear
and, in retrospect, obvious: the first 90% of Nickle
development took 15 years, and the remaining 90%
took the last three months. The result appears, so
far, to be worth the work: Nickle has never been
faster, more stable, or more pleasant to use.

The first public source release of Nickle was in mid-
April of 2001. As of the first week since it was an-
nounced on freshmeat.net, about 100 copies have
been downloaded. So far, there have been no bug
reports, and contributions have already been made
to the project by users who helped with creating

4Several potential floating point representations were con-
sidered. In particular, interval arithmetic [Kea96], while in
some ways preferable, was not chosen due to performance
concerns.

8

alternative binary packages for the distribution.

Nickle was designed to be highly portable within
the UNIX environment: so far, that goal appears to
have been met. Prerelease, it was compiled on a va-
riety of UNIXes with no problems. GNU autoconf

was invaluable here: while difficult to use, it does
its intended job admirably.

5 The Nickle Implementation

Nickle’s current implementation consists of about
25,000 lines of C code in about 45 files, together with
about 1000 lines of builtins written in Nickle itself.
Great attention has been paid to modularity in the
implementation: the current structure is the result
of literally years of refactoring and reorganization
effort. The rough breakdown of the implementation
is as follows:

• Builtin datatypes: approximately 20 files, with
one .c file and one .h file per type.

• Memory management: 6 files

• Internal ADT implementations: about 8 files

• Execution infrastructure: about 8 files

The remainder consists of miscellaneous support
routines.

As noted above, the implementation uses a highly
stereotyped interface to the garbage collector, which
allows the C code to easily allocate and reference
storage in the Nickle heap. Since this strategy was
perfected, memory reference errors in the C infras-
tructure of the implementation have become ex-
tremely rare. Of course, the increasing maturity
of the implementation is also a factor here.

Because of the ease of memory management and
the extreme modularity, adding new C code to the
Nickle implementation is quite easy, even for some-
one not overly familiar with the internals. As men-
tioned above, this is one reason why the lack of
a native-code interface as part of the Nickle pro-
gramming language is regarded as unobjectionable.
Massey has added C builtins to the implementation
on a couple of occasions, and has found the overhead
due to learning curve and extra code requirements
to be on the order of a few hours. It is not clear that
this could be improved with a JNI-style builtin na-
tive interface. Portability is an issue, however: the
integrated C code should be able to run on arbitrary
UNIX (at least) platforms.

6 Experience With Nickle

The various incarnations of Nickle have been used
for a range of tasks. First and foremost, Nickle is
the calculator program of choice: it is an altogether
superior5 replacement for UNIX bc, dc, expr, and
the like.

Nickle is also a very nice general purpose pro-
gramming language, especially for numerical work.
Nickle programming projects distributed with the
reference implementation include

• The Cribbage scoring implementation men-
tioned above.

• A DSP filter design package.

• Sample data generation for DSP verification.

• A full RSA implementation, including Miller-
Rabin probabilistic prime number key genera-
tion.

• An implementation (now converted from Nickle
to C for use inside Nickle) of Weber’s acceler-
ated GCD algorithm.

• A port of the C reference code for the Rijndael
encryption algorithm.

In addition, numerous other projects have been as-
sisted by Nickle, including

• Graphics chip clock calculation, and XFree86
“mode line” calculation.

• Probability calculations for Collectible Card
Games.

• Course grading.

As noted above, the performance of Nickle is not
spectacular, but is adequate for the tasks for which
it is intended. For example, the Miller-Rabin imple-
mentation typically spends 5–15 seconds generating
a 512-bit probabilistic prime on a 700MHz Athlon
with adequate memory. This is about a factor of 5
slower than the C-based probabilistic prime gener-
ator of OpenSSH. As another example, the Nickle
implementation of the Weber GCD code mentioned
above is typically 10 times slower on a given input
than the C implementation. On the other hand, the
Nickle implementation was much easier to develop.

5Nickle’s overhead is considerably larger than those of the
listed programs. In practice, this is not a noticeable problem
on modern UNIX platforms.

9

The end result of this experience has been that
Nickle has become part of the authors’ standard
toolkit. It has reached its design goals: the current
version is simple to use, extend, and modify.

7 Related Work

The design ideas behind Nickle have been drawn
from a number of language implementations, as
mentioned above. Relevant languages include C,
C++, Icon, Java, ML, Modula-3, Perl, Python,
Scheme, UNIX sed, AWK, bc, dc and expr, and
a host of others. A detailed comparison with each
of these language is precluded by space considera-
tions, but some important considerations and prin-
ciples emerge.

7.1 What Nickle Is Not

First, Nickle is not a text-processing language.
While it does include some rudimentary support
for strings, and support for file I/O and formatting
comparable to (and modeled after) UNIX stdio, it
has no native support for such niceties as regular-
expression-based pattern matching, implicit stream
processing, textual variable substitutions, text edit-
ing, etc. While the authors have considered the
problem of designing a modern text processing lan-
guage, it would not look a great deal like Nickle; in
addition, it is not clear that there is a niche for yet
another text processing language given the popular-
ity of many existing candidates.

Second, Nickle is not a language for building large
applications. While it does have some support for
syntax-level modularity, the implementation is cur-
rently rather dependent on whole-program compila-
tion. In addition, the exclusion of OOP and GUI
features, as well as the relative inefficiency of the
current implementation, augers ill for Nickle’s ac-
ceptance as a replacement for Ada.

Third, Nickle is not a symbolic algebra package. Its
domain is strictly numeric. While a great deal of the
Nickle feature set might be useful in a symbolic al-
gebra package, constructing such a thing is probably
beyond the purview of a two-person team inexperi-
enced in such matters, and certainly would vastly
exceed the current 25K lines of code.

7.2 Comparison With Other Languages

Given the design goal for Nickle—a language for
desk calculation and prototyping of numerical and

semi-numerical algorithms—it is constructive to
compare its feature set and implementation prop-
erties with those of a few of the languages listed
above.

First and foremost, unlike all of the languages
listed above except certain Scheme implementa-
tions, Nickle supports a wide variety of exact or
highly precise numeric types, organized in a sensible
fashion and properly checked statically and dynam-
ically. The true power of Nickle is not apparent
until one tries to add up 10,000 probabilities, and
finds that in Nickle they sum to 1; not 0.998 or 1.02,
but just plain 1. The ability to select the mantissa
precision for floating point computation is similarly
useful: it is notable that Nickle is quite usably fast
with the default mantissa precision of 256 bits.

A more fair comparison is with R5RS or later
Scheme implementations supporting the full nu-
meric model. Such an implementation provides a
quite usable calculator and programming language,
comparable in some ways to Nickle. The principal
differences here include the C-like syntax (indeed,
any syntax at all), the static type system, names-
paces, structures, etc., all of which ease the sort of
programming at which Nickle is aimed. (The lack
of built-in list support is a missed feature, as noted
above.)

ML has the potential to do much of what Nickle
does. Its support for functional programming is ob-
viously far superior to Nickle’s, and its syntax, type
system, and the like are comparable. The learn-
ing curve for ML tends to be fairly steep by most
accounts. The experience of the authors is that C
programmers pick up Nickle immediately, not just
because of the C-like syntax, but also because of
the first-class support for imperative programming:
Nickle does not try to change one’s programming
paradigm. Of course, the support for numeric types
in Nickle is also superior to that of any ML imple-
mentation of which the authors are aware.

Some interest has been expressed in the relationship
between Nickle and Perl. First and foremost, as
noted above, Perl, sed and AWK are aimed primar-
ily at text processing, and are well-suited to this sort
of task. The support for numeric programming in
Perl is limited: until recently, the only numeric rep-
resentation supported was IEEE floating point num-
bers. In addition, the complex syntax and seman-
tics of the language tends to make for a steep learn-
ing curve even for experienced programmers [Sch93].
Finally, Perl’s complicated system of types and val-
ues is somewhat error-prone [McC01] and contains

10

Table 1: Benchmark execution time in seconds.

bc Nickle GMP
ifact 67.6 5.7 3.4
rfact 67.8 6.0 3.3
choose 130. 6.3 1.8
comp 31.7 9.6 2.6

little support for static typing.

7.3 Performance

Nickle’s performance appears to be around 5 times
slower than equivalent C code using the GNU GMP
multiple-precision library, and quite a bit faster
than GNU bc. Some simple benchmarks were run
to compare the performance of Nickle 1.99.3, GNU
bc 1.05, and C using GNU GMP 2.0. Four bench-
marks were utilized: rfact computes 20000! using
the obvious recursive implementation, ifact com-
putes 20000! iteratively, choose computes

(

20000

5000

)

(using ifact in the C and bc versions), and comp

applies the Miller-Rabin test to the prime number
31957 for every possible base from 1 to 31956. (The
source of all of these benchmarks is available with
the Nickle distribution.)

Table 1 shows Nickle execution times on an Athlon
700 with 256MB of RAM running Linux kernel 2.4.1
in single-user mode. All times are the minimum of 5
insignificantly different consecutive runs. (Nickle’s
built-in ! operator, while more convenient, produced
similar timings to the hand-coded versions.) Nickle
and GMP spent about 50% of total time on the fac-
torial benchmarks generating and printing the deci-
mal result (since there appears to be no easy way to
inhibit this behavior in bc). The runtimes for these
benchmarks are thus somewhat inflated. In general,
the performance results are positive: the small per-
formance hit over C code is more than made up for
in ease of use.

8 Lessons Learned

Certainly, a number of pragmatic lessons about lan-
guage design and implementation have emerged over
the years of Nickle development. It turns out, for ex-
ample, to be difficult to give an LALR(1) grammar
for such a strong superset of C. Garbage collection
turns out to be a huge win over the alternatives: in
practice the authors have never observed a problem
related to collector performance, and the ease of im-
plementation and the quality of the user experience

have been tremendously improved. The principle of
least surprise has proven a good guiding principle
for the design: the authors as well as novice users
seem to be able to use Nickle without deep thought
or constant reference to the documentation.

It was also interesting to observe how two people
with similar backgrounds and tendencies can have
quite different opinions about even broad details of
language design. While the authors always largely
agreed on where they were going, there was much
involved discussion about the best way of getting
there.

In particular, the influence of other languages on
the Nickle design was complex and varied: both
authors learned a lot about a variety of language
options and about how to keep a clear head when
evaluating and implementing them. Corner cases
in existing language features proved to be problem-
atic: Nickle tended to adopt in a piecemeal fashion
features that other languages were designed around,
and understanding the best methods of fitting these
features in usually required a significant effort.

In preparing the initial draft of this paper, the au-
thors wrote:

The degree of meticulousness [involved in
finalizing Nickle] is admittedly unusual in a
public utility-belt programming language
release. However, it should be understood
that the authors have refrained from a
public release over a 15-year period pre-
cisely to reach this level of quality while
there was still room to experiment. Fol-
lowing a successful public release, it will
become much harder to make major spec-
ification or implementation changes. This
drives a desire to get it largely right the
first time.

As public release drew near, it became apparent
that a number of significant last-minute changes to
the language and the implementation were not only
desirable but necessary. To a large degree, however,
these changes were intended to articulate the goal
quoted above: to get the language as “right” as pos-
sible before the first public release.

9 Conclusion

Nickle has been an interesting and quite success-
ful experiment in utility-belt programming language

11

design and implementation. It has increased the au-
thors’ understanding of various programming lan-
guage options, proved out some of their opinions,
and been instrumental in getting some of their other
work done. We hope it will be useful and interesting
for the computing public as well.

Acknowledgments

Thanks to the authors’ various employers and in-
stitutions over the past 15 years for their tolerance
and even encouragement of an effort devoted to a
marginally work-related endeavor. Thanks to the
Usenix referees for their insightful comments on the
paper, and to Clem Cole in particular for his care-
ful (and patient) reading and many helpful sugges-
tions that vastly improved the presentation. Thanks
to the pioneers of programming language develop-
ment, who made the implementation of Nickle both
possible and desirable. And a big thanks for the
invaluable contributions of users of Nickle and its
predecessors over the years, including advice, kib-
itzing, bug reports and moral support.

Availability

Nickle and a variety of supporting materials are
freely available in both source and binary forms
from the Nickle web site: http://www.nickle.org.

References

[AWK88] A. V. Aho, P. J. Weinberger, and B. W.
Kerninghan. The AWK programming
language. Addison-Wesley, 1988.

[BOSW98] Gilad Bracha, Martin Odersky, David
Stoutamire, and Phillip Wadler. Mak-
ing the future safe for the past:
Adding genericity to the Java pro-
gramming language. In Conference on
Object-Oriented Programing systems,
Languages and Applications (OOPSLA
’98). SIGPLAN, ACM, October 1998.

[CE92] William Clinger and Jonathan Rees

(Editors). Revised 4 report on the algo-
rithmic language Scheme. Technical Re-
port CIS-TR-91-25, University of Ore-
gon, February 1992.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and
Gilad Bracha. The Java Language Spec-
ification Second Edition. The Java Se-
ries. Addison-Wesley, 2000.

[IEE85] IEEE Task P754. ANSI/IEEE 754-
1985, Standard for Binary Floating-
Point Arithmetic. IEEE, New York,
NY, 1985. Revised 1990.

[IEE87] IEEE. IEEE 854-1987, Standard
for Radix-Independent Floating-Point
Arithmetic. IEEE, New York, NY, 1987.
Revised 1994.

[Kea96] R. Baker Kearfott. Interval Computa-
tions: Introduction, uses, and resources.
Euromath Bulletin, 2(1):95–112, 1996.

[Lut01] Mark Lutz. Programming Python.
O’Reilly & Associates, Inc., second edi-
tion, 2001.

[MC78a] Robert Morris and Lorinda Cherry.
BC - An Arbitrary Precision Desk-
Calculator Language. AT&T Bell Lab-
oratories, 1978. Unix Programmer’s
Manual Volume 2, 7th Edition.

[MC78b] Robert Morris and Lorinda Cherry.
DC - An Interactive Desk Calculator.
AT&T Bell Laboratories, 1978. Unix
Programmer’s Manual Volume 2, 7th
Edition.

[McC01] Jamie McCarthy. Sophomore uses list
context; cops interrogate. Slashdot,
March 2001. URL http://slashdot.

org/yro/01/03/13/208259.shtml, ac-
cessed April 18, 2001 03:52 UTC.

[McM78] Lee E. McMahon. SED - A Non-
interactive Text Editor. AT&T Bell
Laboratories, 1978. Unix Programmer’s
Manual Volume 2, 7th Edition.

[MTH90] Robin Milner, Mads Tofte, and
Robert W. Harper. The Definition of
Standard ML. MIT Press, 1990.

[Nel91] Greg Nelson. Systems Programming
with Modula-3. Prentice Hall, 1991.

[Sch93] Randal L. Schwartz. Learning Perl.
O’Reilly & Associates, Inc., 1993.

[WCS96] L. Wall, T. Christiansen, and R. L.
Schwartz. Programming Perl. O’Reilly
& Associates, Inc., second edition, 1996.

12

Appendix: The Nickle Tour

Material in typewriter font is taken from a Nickle
interactive session. Material in italics is commen-
tary.

$ nickle

The obvious calculations work, including fancy op-
erators and arbitrary precision.

> 1 + 1

2

> (2 ** 4)!

20922789888000

Rationals are representend exactly, but printed in
decimal. Integer division with // is different from
rational division.

> 1 / 3

0.{3}
> . * 3

1

> 1 // 3

0

Expected conveniences, like the value . denoting the
last value printed, work. Implicit declarations work
at top level, as do explicit typed declarations. Using
a statement form at top level results in no value
being printed.

> x = .

0

> int y = x;

C-style statements can be typed at the command
line. The + prompt denotes an incomplete state-
ment.

> for (int i = 1; i <= 9; i += 2)

+ x += i;

> x

25

Exact integer square roots will be represented by in-
tegers. For irrational roots, a 256 bit floating point
representation is used; the printed representation is
indistinguishable.

> xsqrt = sqrt(x)

5

> sqrt(2)

1.4142135623730

> . * .

2

> sqrt(5)

2.2360679774997

> . * .

4.9999999999999

Functions may be typed at the command line. Ar-
gument and result types are optional. This function
returns nonsense for non-integers.

> function sqr(x) {
+ auto s = 0;

+ for (int i = 1;

+ i < 2 * x + 1;

+ i += 2)

+ s += i;

+ return s;

+ }
> sqr(5)

25

> sqr(5.1)

36

Functions are first-class: untyped functions can be
assigned to statically typed function variables.

> int(int) isqr = sqr;

> isqr(5)

25

> isqr(5.1)

-> isqr ((51/10))

Incompatible types ’int’, ’rational’

argument 0

Operators try to behave properly in as many cases
as possible.

> 5.1 ** 2

26.01

> -5.1 ** 2

26.01

> -5.1 ** 3

-132.651

> -5.1 ** 3.1

Unhandled exception "invalid_argument"

at /usr/local/share/nickle/math.5c:196

"log: must be positive"

0

(-51/10)

> quit

13

For reasonable sized chunks of code, it is normal to
use a separate text file.

$ cat > stack.5c

namespace Stack {
typedef frame;

typedef struct{
poly val;

*frame next;

} frame;

public typedef * *frame stack;

public exception stack_underflow();

public stack function

new() {
return reference(0);

}

public void function

push(stack s, poly xval) {
*s = reference((frame){
next = *s,

val = xval

});
}

public poly function

pop(stack s) {
if (*s == 0)

raise stack_underflow();

poly xval = (*s)->val;

*s = (*s)->next;

return xval;

}
}
^D

Here is the Stack ADT in action.

$ nickle

> load "stack.5c"

> print Stack

namespace Stack {
public typedef **frame stack;

public stack function new ();

public void function

push (stack s, xval);

public function pop (stack s);

}
> import Stack;

> stack s = new()

&0

> push(s, "x")

> push(s, 3)

> pop(s)

3

> pop(s)

"x"

Uncaught exceptions lead to the debugger.

> pop(s)

Unhandled exception "stack_underflow"

at stack.5c:23

- trace

raise stack_underflow ();

pop (&0)

pop (s)

- s

&0

- done

> quit

$

14

